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We investigate the correct implementation of the exchange-correlation potential for the excited core
electron in near-edge x-ray-absorption fine structure (NEXAFS). We examine the effects on NEXAFS
spectra of the ground-state Slater and excited-state Dirac-Hara exchange potentials and current im-
plementations of the Hedin-Lundqvist exchange-correlation potential on the muffin-tin model. For a
test case of gas-phase acetylene, we find good agreement with prior experimental spectra only with the
Hedin-Lundqvist potential implemented on the local-density approximation with a Thomas-Fermi-like

requirement of constancy of the chemical potential.

I. INTRODUCTION

The phenomenon of x-ray-absorption near-edge struc-
ture (NEXAFS) refers to the strong modulations of the
x-ray-absorption coefficient as a function of x-ray energy
above the threshold for the excitation of an atomic core
electron. NEXAFS covers the energy range up to about
50 eV above the edge. Beyond this range (up to 1 keV)
only small oscillations of the absorption coefficient,
known as extended x-ray-absorption fine structure
(EXAFS), may be observed. Both EXAFS and
NEXAFS originate from the modification of the photo-
electron final state by the backscattering of the ejected
photoelectron. Only the degree of the multiple scattering
of the photoelectron is different.

For electrons ejected from the atomic cores with a rela-
tively high energy, atomic-scattering factors exhibit a
strong maximum in the forward-scattering direction. As
a result, the x-ray-absorption coefficient is dominated by
single-scattering processes. Although this simplifies the
interpretation of EXAFS, the structural information
which could be extracted from such spectra is limited to
the atomic radial distribution function. In the NEXAFS
region of the absorption spectrum, the ejected core elec-
tron explores its local environment through many
multiple-scattering paths. This is the reason that
NEXAFS gives much more structural information, e.g.,
the coordination geometry and the density and symmetry
of the unoccupied valence electron states.

The second significant difference between NEXAFS
and EXAFS is the role of exchange and correlation
effects. The total energy E of an electron in a sea of other
electrons may be written

E=K+Vy+V,, (1

where X is its kinetic energy; V its Hartree potential en-
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ergy, which may be determined from the solution of
Poisson’s equation for the charge density of its environ-
ment; and V,_ is its exchange-correlation energy. It has
become customary to treat ¥,  as an extra contribution
to the total potential energy of the electron. Also, the
quantities V' and V. are often loosely referred to as po-
tentials (as we do in this paper) even though dimensional-
ly they are energies.! A complication with the exchange-
correlation potential V_ is that, unlike V, it is a func-
tion of the kinetic energy K of the electron.

For an EXAFS photoelectron, only the high-energy
asymptotic behavior of V. is of relevance. At such ener-
gies, as a rule, the exchange-correlation energy varies
only slightly with K. Nevertheless, Mustre de Leon,
Rehr, and Zabinsky2 suggested that, even in EXAFS, use
of an energy-dependent exchange-correlation potential
for the excited final state is necessary for the best quanti-
tative agreement with experiment. A NEXAFS photo-
electron is even more sensitive to the energy dependence
of the exchange-correlation interaction. The main pur-
pose of this paper is to underline this sensitivity and to
highlight ways of correct implementation of such an in-
teraction in the theory of NEXAFS. We illustrate our
points by considering C K-shell NEXAFS of a small gas-
phase hydrocarbon molecule, acetylene.

The outline of the remainder of this paper is follows.
In Sec. II we discuss the importance of the energy-
dependent exchange-correlation potential for excited
states in more detail, and compare the different known
forms of that quantity. In Sec. III we make a critical
study of the existing implementations of such potentials
in NEXAFS calculations, and propose our own approach
to the problem. In Sec. IV we present the results of our
computer simulations of NEXAFS spectra for a gas-
phase acetylene molecule to demonstrate the advantage
of our proposed approach. Section V contains a sum-
mary and conclusions.
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II. THE EXCHANGE-CORRELATION
INTERACTION OF A NEXAFS ELECTRON

A NEXAFS photoelectron is created when an atomic
core electron makes a transition to an unoccupied state
above the Fermi level as a result of the absorption of an
x-ray photon. The photoelectron radiates from the ab-
sorbing atom and experiences the electrostatic ion-core
potential and the exchange-correlation potential of its en-
vironment. The exchange part of the latter potential
arises from the anticorrelation between electrons of like
spin due to the Pauli exclusion principle, while the corre-
lation part may be thought of, roughly, as due to the
Coulomb repulsion between all electrons. Since both
these contributions lead to an anticorrelation among the
electrons, they both cause a lowering of the mutual
Coulomb interaction energy of the electrons, thus lower-
ing the apparent potential energy of the photoelectron.

An x-ray-absorption spectrum is a plot of the absorp-
tion coefficient W as a function of the energy w of the x-
ray photon, where

o=E—E,, (2)

with E_ the energy of the core electron, the total energy
E is specified by (1), and we take Planck’s constant equal
to unity. Combining (2) and (1) we note that

0=K+Vy+V, . —E, . 3)

NEXAFS peaks correspond to constructive interference
conditions in the multiple scattering of an ejected core
electron within the neighborhood of the x-ray-absorbing
atom. These are determined by the wavelength (or kinet-
ic energy K) of that ejected electron. However, in gen-
eral, the exchange-correlation energy V,. is more nega-
tive for lower values of K (and hence x-ray frequency)
than for higher values. Thus lower-energy NEXAFS
peaks would be expected to be downshifted more than
those of higher energy by the exchange-correlation ener-
gy. Consequently, an energy-dependent exchange-
correlation energy would tend to increase the spacing be-
tween peaks on a NEXAFS spectrum. The results of Sec.
IV will bear out this conclusion.

An early calculation of the exchange part V., of the
potential energy of an electron in a uniform electron gas
was made by Dirac,’ and applied to electron spectrosco-
py by Hara.* The Dirac-Hara exchange potential is calcu-
lated using the Hartree-Fock approximation to a many-
electron state, and assuming that the positive charges of
the atomic nuclei are distributed uniformly (the jellium
model). In Hartree atomic units, the Dirac-Hara ex-
change energy of an electron of kinetic energy K may be
written

(ZEF)I/Z 1_x2

1—x

, 4)
T x

where Ep is the Fermi energy of the electron gas, and
x=(K/Eg)'”2. The potential energy Vp, is negative,
and increases monotonically with x (and hence K), ap-
proaching zero asymptotically at high energies.

The Dirac-Hara potential (4) arises from the difference
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between the solutions of the Schrodinger equation for a
free-electron gas in the Hartree and Hartree-Fock ap-
proximations.” So-called correlation effects arise if in-
teractions between electrons of opposite spin are includ-
ed. This can be done if the Schrodinger equation is re-
placed by the Dyson equation for the electron Green
function G (E, k),® where

G YE k)=E—K —3(E,k) . (5)

In the above expression, k is the wave number of the elec-
tron, K =k?2/2 (in hartree) is its kinetic energy, E is the
energy of an electron in an interacting electron gas, and
3(E,k) is the self-energy. The prescription for summing
the significant Feynman diagrams which contribute to =
is well known from quantum-field theory. Neglecting the
vertex corrections to the electron-electron interaction,
the self-energy (i.e., the exchange-correlation energy) of
an electron excited above the Fermi level of a free-
electron gas may be found from the integral

d’qdo Velq)

2(E,k)=if n)* elg,0)

G(E—w,k—q), (6)

where the Fourier coefficient Vy;(g) of the Coulomb po-
tential is screened by the dielectric function e(q, ).

Hedin and Lundqvist have introduced the so-called
GW approximation® for evaluating the integral (6), in
which the function G on the right hand side is approxi-
mated by the Green function of a free electron. The re-
sulting approximation to X is known as the Hedin-
Lundqvist potential Vy;, which is characterized by its
energy dependence, and its possession of an imaginary
part, caused by inelastic processes such as the creation of
electron-hole pairs and of plasmons. Other forms of the
exchange-correlation potential, based on free-electron
models, have also been proposed by other authors.” !°

A common feature of current practical electronic-
structure calculations is the use of the local-density ap-
proximation (LDA).'12  This postulates that the
exchange-correlation potential V,. of an electron at a
point r of density n(r) in a nonuniform electron gas may
be approximated by that of an electron in a uniform elec-
tron gas of the same local density. Using this approxima-
tion, the chemical potential u may be derived by applying
the variational principle to the total energy of the elec-
tron gas. As a result, u may be considered a functional of
the ground-state potential and of the kinetic energy of the
electron gas. In x-ray absorption u plays a crucial role
since it determines the photon energy at the absorption
edge. Therefore, as in the EXAFS theory of Lee and
Beni,!® we suggest that any approximate treatment of ex-
change and correlation should ensure that p is constant
throughout the material. We return to this point in Sec.
III.

So far we have discussed the excited-state exchange-
correlation energy. The relation of such a potential to
the corresponding ground-state exchange-correlation en-
ergy employed in, for example, density-functional
theory,!"!? is conveniently illustrated by returning to the
Dirac-Hara exchange energy (4). If this were integrated
over all the occupied states, the resulting mean exchange
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energy per electron (in hartree) is given® by the expres-
sion

Ve =—(3/4m)(37°n173) , (7

where n is the density of the electrons. This dependence
(Vg xn'/?) is common to all models of energy-
independent ground-state exchange potentials, e.g., that
from Slater’s Xa prescription.’* In Sec. III we will also
examine how to ensure the continuity of the exchange-
correlation energy of an electron, excited from the atomic
ground state to low-lying excited states.

III. CALCULATION OF THE
EXCHANGE-CORRELATION POTENTIAL
ON THE MUFFIN-TIN MODEL

A. Theory

Unlike the case of an isolated atom, the potential ex-
perienced by an electron in a sample of condensed matter
has a very complicated spatial variation. A common rep-
resentation of that potential that has proved to be very
successful in the calculation of the electronic structure of
metals,'® which is in common use in the theoretical mod-
eling of electron spectroscopies such as low-energy elec-
tron diffraction (LEED),'® photoemission,!” and x-ray ab-
sorption,18 is the muffin-tin model. In this model, the po-
tential in the vicinity of the atomic nuclei is taken to be
of spherical symmetry up to a distance known as the
muffin-tin radius, while the potential outside this radius,
the interstitial potential, is taken as constant, equal to
some average of the true potential that region.

One of the key problems in the calculation of x-ray-
absorption spectra in this model is the determination of
the threshold for photon absorption. This threshold has
been identified by Mustre de Leon, Rohr, and Zabinsky2
with the chemical potential u of the interstitial regions
between the muffin-tin spheres representing the atoms,
where

p=ki(ny N /2+Va({np)), ®

with u representing the local Fermi momentum, V,, the
ground-state interstitial potential energy (with respect to
the vacuum level), and n;,, the interstitial electron densi-
ty. Note that, according to this prescription, both k, and
V. are approximated by their values for a uniform elec-
tron gas of the mean interstitial electron density (7, ).
It has been claimed? that this approximation introduces
tolerable errors of a few eV in the estimated chemical po-
tential compared with self-consistent electronic structure
calculations.

If an electron were excited to some energy E above the
chemical potential in the interstitial region, its total po-
tential energy may be written

Vit =V T8V (E,nine) 9

1

where 8V, (E,n;,) is the energy-dependent part of the
exchange-correlation energy above the Fermi level [tak-
ing 6V,.(0,n;,,)=0, and assuming that E is measured
with respect to the chemical potential]. Thus the kinetic
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energy of an excited electron of total energy E in the in-

terstitial region, where the potential is spatially invariant,

is determined by the equation
k(EY/2=k2(n,,)/2+E—8V, (E,n;.,), (10)

nt

where k(E) is the energy-dependent wave number in the
interstitial region, and the total electron energy E is mea-
sured with respect to the chemical potential p, which in
turn is determined by the ground-state exchange-
correlation energy via Eq. (8).

Within a muffin-tin sphere, of course, the potential is a
strongly varying function of position. However, a
straightforward generalization of (9) within the spirit of
the LDA enables the kinetic energy of a NEXAFS elec-
tron at a point r, of local density »n(r) within a muffin-tin
sphere, to be defined as

kAE,r)/2=k3n(r))/2+E—8Vyp(E,n(r)) , (11)

where k(E,r) is an energy and position-dependent wave
number within the muffin-tin sphere, §Vyr(E,n(r)) is
energy-dependent part of the exchange-correlation ener-
gy, and the local Fermi wave number is taken as

kp(n(r)=372)3n1%(r) . (12)

A similar natural generalization of Eq. (8) also within
the spirit of the LDA estimates the chemical potential
within a muffin-tin sphere to be

w(r)=k2(n(r))/2+ Vyr(n(r)) . (13)

By definition, a chemical potential should be constant
throughout a system. Indeed, if the energies E appearing
in Egs. (9), (10), and (11) are to refer to the same quantity,
they must be measured from the same chemical potential.
However, as we demonstrate below, the values of the
chemical potential calculated from (8) and (13) are gen-
erally not in agreement.

To illustrate this point we consider a simple muffin-tin
model of an artificial crystal of repeating units of the ace-
tylene (C,H,) molecule. In order to approximate the po-
tential of the gas-phase acetylene molecule as closely as
possible, within the parameters of the muffin-tin model,
the size of the unit cells containing each molecular unit
was increased until no discernible changes in calculated
x-ray-absorption spectra were observed.

Curve a of Fig. 1 depicts the variation of u(r), as calcu-
lated from (13), within a C muffin-tin sphere of our
artificial acetylene crystal. This chemical potential be-
comes more and more negative as the position of the
atomic nucleus is approached since Vyp(u,n(r)) be-
comes more negative deep within the atom faster than
the Fermi energy kZ(n(r))/2«n?/3(r) increases. The
straight line b of Fig. 1 represents the estimate of the
chemical potential in the interstitial region, as calculated
by Eq. (8), It is obvious that prescriptions (8) and (13)
above do not ensure the important physical requirement
of the constancy of the chemical potential.

In order to overcome this problem in the application of
the LDA, at least in non-self-consistent calculations, we
borrow an idea from the Thomas-Fermi model: put the
chemical potential first. The LDA may be used to calcu-
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FIG. 1. Radial variation of the chemical potential p within
the C muffin tin of our model of an acetylene (C,H,) molecule.
Line a: that calculated from Eq. (13), with both potential and
kinetic energies estimated by LDA formulas. A discontinuity
occurs at the muffin-tin radius of ~1.1 a.u., beyond which p
takes the value indicated by line b, the corresponding estimate
for the interstitial region.

late the total potential Vyer within a muffin tin, but, in
order to ensure constancy of the chemical potential, we
suggest that the Fermi wave number within a muffin-tin
sphere be evaluated not from (12) but from

kF(f):{Z[M_VMT(f)]}l/Z ’ (14)

with the chemical potential u taken to be its value in the
interstitial region, as calculated from (8). Equation (14) is
essentially a law of energy conservation for an electron at
the Fermi level throughout the material. Unlike
definition (12), Eq. (14) enables k, to “know” about not
just the local electron density at the given point r, but
also about the electron distribution in the interstitial re-
gion, through the value of 4. To ensure consistency with
the idea of a constant chemical potential, the wave num-
ber of an excited electron should be calculated not by
(11), but by!'?

K(E,r)={2[E +u—Vyp(t)—8Vyr(E, kp(r)]}/2 .
(15)

It is worth noting that Eq. (15), introducing a local kinet-
ic energy of the electron, is semiclassical by its nature
(otherwise the kinetic energy at a given point does not ex-
ist). Of course, rather deep inside the muffin tin (atom),
where the potential V1 and the density n vary very rap-
idly, Eq. (15) is not valid. Fortunately, exchange and
correlation potential in that region is negligibly small
compared to V. Since we are concerned about the
correct implementation of the exchange-correlation ener-
gy, only a thin spherical layer in the vicinity of the
muffin-tin boundary is important. Within this layer, Vyr
and n are smooth, slowly varying functions on the scale
of (ky)~! which satisfy the semiclassical requirements.

B. Determination of the muffin-tin zero

An important quantity within the muffin-tin model is
the value assigned to the constant interstitial potential,

V. L. SHNEERSON, W. T. TYSOE, AND D. K. SALDIN 51

Vint» between the muffin-tin spheres, also known as the
muffin-tin zero. Due to the energy dependence of the
exchange-correlation potential, this quantity will also be
energy dependent. In this subsection we compare
different prescriptions for the calculation of this quantity.

The customary approach is to determine V, as an
average of the potential outside the muffin-tin spheres.
Equation (9) indicates that this is a sum of ground-state
and energy-dependent excited-state parts. In the work of
Mustre, Rehr, and Zabinsky,2 both these quantities have
been calculated through the mean value (n,, ) of the in-
terstitial charge density. Instead, we suggest that it is
more appropriate to calculate the mean value of a func-
tion by averaging the function itself, not its argument.
Simple statistical analysis confirmed that substantial
differences follow from the different methods of averag-
ing. For a grid of about 37 000 evenly spaced interstitial
points for an acetylene (C,H,) molecule, we found that
(n;,,»=0.063 and (n2>)=0.097. Thus for, e.g., the
Fermi energy Er, which is proportional to n?/3, quite
different results are found depending on whether it is cal-
culated via {n;, ) or {Ep), respectively. The fractional
difference is ({n,, Y23 —{(n23))/{(n%?), ie., about
60%.

Table I below compares the estimates of the energies
(in hartree) of the ground-state Slater Xa exchange ener-
gy Vg; the total interstitial potential energy V,,, as es-
timated as the sum of ¥V and the Hartree energy Vy; the
Fermi energy Ep(=k2/2); and the chemical potential u,
as calculated by these two methods. The second column
gives the value of the general quantity f, representing
that in the first column, as determined by its value at the
mean interstitial density f({n;,)). The third column
gives the values of ({ f)) found by averaging the quanti-
ties themselves. The percentage relative differences be-
tween the values in columns 2 and 3 are shown in the
third column.

Similar differences are found in the values of the
energy-dependent muffin-tin zero V; (E,n;,) of the ex-
cited states. Figure 2 shows the results of calculating this
quantity by four different algorithms: curve a depicts the
result of calculating V,,(E,n;,) by the energy-
independent Slater X« prescription.!* Curve b was calcu-
lated from the formula

Vit (E,ning )= V({0 D)+ {Vpu(E, (1))
—'VDH(O,(nim>)} > (16)

TABLE 1. Estimates of the energy (in hartree) of the
ground-state Slater Xa exchange energy V. See text for de-
tails.

Quantity fng)) N Difference
Vs —0.220 —0.127 73%
Vo —0.249 —0.157 59%
Er 0.140 0.085 65%
73 —0.110 —0.072 53%
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FIG. 2. Energy dependence of the muffin-tin zero ¥V, for the
model acetylene molecule. The exchange-correlation potentials
were calculated as follows. Line a: ground-state Slater Xa ex-
change; lines b and c¢: Dirac-Hara exchange and Hedin-
Lundqvist exchange-correlation, respectively, both evaluated at
the mean interstitial electron density {7;, ). Line d: the result
of averaging the Hedin-Lundqvist potential in the interstitial re-
gions. All excited-state potentials were matched on to the
ground-state Slater potential at the Fermi level.

in which the energy-dependent part of the potential is
calculated by the Dirac-Hara expression (4), but is
matched? on to the ground-state Slater exchange poten-
tial at the Fermi level, all potentials being evaluated for
the mean interstitial density {n;, ). Curve ¢ was calcu-
lated by the same expression except that the Hedin-
Lundqvist potential Vy; replaced Vpy in (16). In our
calculations Vy; was evaluated by the computer program
developed by Mustre de Leon, Rehr, and Zabinsky?
which is based on the additional plasmon-pole approxi-
mation of Lundqvist.19 Finally, curve d was calculated
from

(Vi (E,niny (1)) = V(nyp (1)) + { Vi (E, njp (1))
- VHL(O’nint(r))} ) ’
(17)

which also employs the same Hedin-Lundqvist potential,
but calculates the average of local LDA potentials, rather
than that corresponding to the mean interstitial electron
density {n;,, ). Note that although curve c is character-
ized by a cusplike dip, due to the plasmon-pole approxi-
mation, this artificial feature completely disappears when
the interstitial averaging is done by Eq. (17) rather than
by one of the form (16). The reason is that the energy as-
sociated with the plasmon-pole cusp depends on the value
of the density of the corresponding homogeneous elec-
tron gas. In our prescription (17), the interstitial poten-
tial is calculated from an average of Hedin-Lundqvist po-
tentials, Vyy, for a whole range of local densities n;,,(r),
rather than that for a single average density {n,, ). The
resulting averaging of the cusps at different energies give
rise to the smooth variation of the potential seen in curve
d. We will see in Sec. IV that this contributes
significantly to the improvement of the agreement be-
tween experimental and calculated NEXAFS spectra.
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It should be noted that although expressions of the
form of (16) and (17) ensure continuity of the exchange-
correlation potential through the Fermi level, they give
an incorrect asymptotic limit at high energies. The inter-
stitial exchange-correlation energy (17), for instance,
tends to a high-energy limit of (Vg(ny(r))
— Vur(0,n,,,(r))} ), whereas strictly it should tend to
zero. The justification for the use of expression (17) in
our calculations below for NEXAFS spectra is that the
excited-state electrons contributing to the spectra are
much closer to the Fermi level than the high-energy lim-
it. Thus one may argue that it is more important to en-
sure continuity of the exchange-correlation potential at
the Fermi level than to strictly satisfy the correct high-
energy limit.

C. The potentials within the muffin-tin spheres

In common with the approach of Ref. 2, we calculate
both the kinetic and potential energies of an electron at
the Fermi level in the interstitial region by some average
of LDA prescriptions of those quantities (although our
method of averaging differs from that of Ref. 2, as dis-
cussed above). This determines our chemical potential p.
Within a muffin-tin sphere the ground-state radial poten-
tial

Vur(F)=Vy(r)+V, (n(r), (18)

where the exchange-correlation potential, V,_, is approxi-
mated by its LDA value, may be calculated by the usual
Mattheiss prescription,?® starting from, e.g., Herman-
Skillman?! self-consistent free-atom wave functions.
Curve a of Fig. 3 represents the radial distribution of
such a potential within a C muffin-tin sphere in our mod-
el of the acetylene molecule. A radial distribution of the
local Fermi energy required to ensure that the total ener-
gy at the top of the Fermi sea is equal to 4 may be calcu-
lated from Eq. (14).

To summarize, we propose that the muffin-tin zero be
calculated from Eq. (17), the chemical potential by

= k(N (£)) /24 V(i (r))) (19)
0 | |
s ®) B
g @)
£
d i
-8 T T T
04 0.6 0.8 1.0

Distance (a.u.)

FIG. 3. Radial variation of the potential within a C muffin-
tin sphere. Line a: calculated by the conventional LDA
prescription, Eq. (18); line b: the fictional potential obtained by
subtracting the LDA kinetic energy from the interstitial chemi-
cal potential.
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and the local electron wave vectors from (14) and (15).
We may term this prescription the constant chemical po-
tential LDA or CCP-LDA.

It is interesting to note that, alternatively, one may
choose to calculate kp by the LDA formula (12) and
evaluate a fictional ground-state potential by

V() =p—ki(n(r))/2 . (20)

This potential is plotted as curve b of Fig. 3. A
significant difference from the potential from the usual
LDA Slater prescription for ¥V is observed. Thus it is
clear that, in the usual LDA prescription (18), the poten-
tial within a muffin-tin sphere falls too fast toward the
center of an atom to keep p constant.

IV. COMPARISONS OF DIFFERENT
PRESCRIPTIONS FOR THE
EXCHANGE-CORRELATION POTENTIAL:
NEXAFS FROM ACETYLENE

In this section we compare the effects of the different
prescriptions for the calculation of the exchange-
correlation potential for C K-shell NEXAFS from gas-
phase acetylene C,H,. We compute the x-ray-absorption
rate by the formula!®

W(w)=W (0)—2k 3 M, (E)m(L|r(E)|L")
L,L’'

XM} (E)O(E) @D

where, in addition to the atomic transition rate W (w),
there appears a modulation [the second term of (21)] due
to multiple scattering by the surrounding atoms. The
matrix elements of the photon-induced atomic transitions
from a core state ¢ to an excited state of energy E are
denoted by M,  ; the elements (L |7|L’) of the scattering
path operator represent the effects of summing the
multiple-scattering paths which begin and end on the
central atom; the symbol L[ =(/m)] represents the com-
bination of angular momentum quantum numbers 1 and
m, and O(E) is a Heaviside function ensuring that the
core electrons may be excited only above the Fermi level.
By dividing the cluster into a set of concentric shells, a
large number of atoms may be included in the calcula-
tions.!® Multiple-scattering processes within each shell
are included in turn. Due to inelastic damping, only
those electrons which interact with a few nearby shells
have a significant chance to be scattered back and affect
the absorption rate. Practically, this means that only a
few of shells are needed to achieve convergence. For our
calculations we used an adaptation of the computer code
of Vvedensky, Saldin, and Pendry.??

It is well known?? that NEXAFS spectra are strongly
dependent on the polarization of incident x rays. For the
purposes of our discussion, we define a Cartesian coordi-
nate system with its z axis defined by the direction of the
C—C bond in the acetylene molecule. When the electric
field e of the x rays is parallel to this direction, the result-
ing spectrum is dominated by a broad o* resonance from
the overlap of the p, orbitals from the two C atoms.
When the electric field is perpendicular to that bond, a
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narrower 7* resonance peak appears, due to the overlap
of the p, and p, orbitals. This is easy to understand, tak-
ing into account the polarization dependence of the ab-
sorption coefficient. For a z-polarized beam, only the
(1,0|7]1,0) element of the scattering path operator con-
tributes.?? Because of axial symmetry, the unoccupied o*
orbital becomes more active as an absorbing mode with
respect to the above-mentioned transition. A 7* reso-
nance is more likely to be excited by x- and y-polarized x
rays because of contributions of (1,%1|7|1,£1) matrix
elements.

Absorption of unpolarized x rays, however, would be
expected to show up the presence of both the 7* and o*
resonances on the same spectrum, since such a spectrum
arises from an average overall direction of x-ray polariza-
tion. In the case of a gas-phase spectrum, of course, the
multiplicity of molecular orientations results in such an
average even for linearly polarized x rays. In Fig. 4 we
show calculated NEXAFS spectra for C K-shell excita-
tions from gas-phase acetylene. The three different spec-
tra shown were calculated using existing prescriptions for
the exchange-correlation potential. The first (curve a)
was calculated assuming a ground-state Slater Xa poten-
tial;!* curve b employed the Dirac-Hara exchange poten-
tial (16), and curve c the corresponding Hedin-Lundqvist
exchange-correlation potential, all following the LDA
prescriptions of Mustre de Leon, Rehr, and Zabinski,?
Since, probably, the absolute energies cannot be relied
upon in these non-self-consistent calculations, the spectra
were shifted in energy to align the 7* peaks on the three
curves.

None of the calculated spectra of Fig. 4 give a good
match to the experimental spectrum.?®> The ground-state
Xa potential (curve a) gives rise to a narrow 7* and a
broad o* resonance, but their separation is more than 8
eV less than the experimental value. In the case of the
LDA Hedin-Lundqvist potential (curve c), the interpeak
separation is greater than the actual one by about 3 eV.

1 1 L 1 1 1 L
I
Z s -
o
& o) i
2
= 4
=] - -
3 © @ Jo
0 —
0 10 30 40

20
Energy (eV)

FIG. 4. Computer simulation of the C K-shell NEXAFS
from gas-phase acetylene using different prescriptions for the
exchange-correlation energy. Spectrum a: Assuming the
ground-state Slater Xa potential. Spectra b and ¢ are from the
Dirac-Hara and Hedin-Lundqvist potentials, respectively, im-
plemented by the LDA scheme of Ref. 2. Experimentally mea-
sured positions of the 7* and o * resonances are indicated by ar-
rows.
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An even greater separation of the 7#* and o* resonances
is found for the Dirac-Hara potential (curve b).

Explanations for the different peak separations have al-
ready been discussed above. The variations of the
energy-dependent muffin-tin-zero levels corresponding to
each of the alphabetically numbered spectra of Fig. 4 are
displayed as the corresponding numbered curves in Fig.
2. There is a correlation between the spacings of NEX-
AFS peaks and the energy variations of the muffin-tin
zero. As pointed out above, the greatest spacing between
the resonances occurs in the case of the Dirac-Hara po-
tential for which the (negative) potential increases very
rapidly with energy. On the other hand, the Xa potential
does not change with energy at all, and results in the
smallest resonance spacing.

Curve ¢ of Fig. 2 showed that if the muffin-tin zero
were calculated assuming a Hedin-Lundqvist exchange-
correlation potential for the mean interstitial electron
density {(n;,), it would reproduce the characteristic
behavior of the artificial cusplike dip associated with the
plasmon pole,!® which in this case happens to be close to
the 7*-resonance energy. This cusp affects the intensity
of the corresponding NEXAFS peak. As the kinetic en-
ergy (E —V;,, ) increases, the electron backscattering am-
plitude becomes weaker, and so does the multiple-
scattering resonance. Comparing spectra ¢ of Figs. 4 and
5, which originate from the same muffin-tin potential
with the muffin-tin zero values in Fig. 2 (curves ¢ and d),
it may be seen that the heights of the 7* peaks are in-
versely correlated with the kinetic energies of the elec-
trons giving rise to them (the greater kinetic energies be-
ing associated with the deeper potentials).

Figure 5 shows the results of computer simulations for
carbon K-edge NEXAFS of the gas-phase acetylene mol-
ecule C,H,, as calculated by our CCP-LDA scheme. The
ground-state exchange was represented by the Slater Xa
potential V. Exchange-correlation effects of the excited
states were included by our prescriptions (14), (15), and
(17) for the implementation of the Hedin-Lundqvist po-
tential V. The relative positions, width, shape, and in-
tensities of the two peaks are in good agreement with the
experimental spectrum?? (the experimental peak positions
are indicated in Figs. 4 and S by arrows). The 7* reso-
nance is narrow because it is more similar to its original
ion-core state than the o* resonance to its constituent
atomic states, due to the different degrees of overlap of
the original atomic states.

V. CONCLUSIONS

It has been recognized that the energy-dependent
exchange-correlation potential for a core electron excited
by an x-ray photon can significantly affect the spacings of
peaks on an EXAFS spectrum, and hence any structural
conclusions drawn from Fourier transform techniques.
The energy dependence of the exchange-correlation po-
tential is even stronger for the lower-energy excited elec-
trons contributing to a NEXAFS spectrum.
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FIG. 5. Computer simulation of the C K-shell NEXAFS of
gas-phase acetylene by the CCP-LDA method. Experimentally
measured positions of the 7* and o* resonances are indicated
by arrows.

We have examined some common implementations of
the exchange-correlation potential for EXAFS, such as
the ground-state Slater and Dirac-Hara excited-state ex-
changes potentials and the Hedin-Lundqvist exchange-
correlation potential, and examined their effectiveness in
reproducing the NEXAFS spectrum of the gas-phase ace-
tylene molecule. We find that, even in the case of the
most sophisticated of these, namely the Hedin-Lundqvist
potential, some prior approximations for its practical
computation prevent it from correctly reproducing the
experimentally observed separation of the 7* and the o*
molecular resonances.

We make two suggestions for the correct implementa-
tion of the Hedin-Lundqvist potential on the muffin-tin
model: first, that the ground-state interstitial potential be
evaluated by averaging the potential in that region, and
not by evaluating the interstitial potential at the average
electron density; second, that both the Fermi energy and
the kinetic energy of the excited NEXAFS electron be
calculated from an algorithm that, like the Thomas-
Fermi model, ensures that the chemical potential be con-
stant throughout the material. We find that such an algo-
rithm correctly reproduces the observed energy separa-
tion of the principal molecular resonances in acetylene.
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