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Abstract 

An analytical theory is developed for the position of the resonances in near-edge X-ray absorption fine structure (NEXAFS) which 
yields extremely good agreement with experiment and allows a universal curve to be calculated for the resonance energies. The 
analytical calculations indicates that, if scattering events are taken as purely atomic, the product kp = constant, where k is the 
wavevector of the outgoing electron at resonance and p the internuclear distance. This is in accord with a rule previously proposed 
by Natoli. It is found, however, that both the constant and the muffin-tin zero energy in the NEXAFS region depend on internuclear 
distance. Their variation as a function of bond length is determined and reveals a more appropriate form of the dependence of sigma 
resonance energy d (measured relative to the ionization potential) with bond length should be: d = A + B/p + C/p 2. This equation 
shows good agreement with the experimentally observed variation in resonance position with bond lengths for series of molecules 
with constant values of (Z1 + Zz) where Z1 and Z2 are the atomic numbers of the scattering nuclei. In fact, this function is rather 
linear over the bond length range commonly encountered in organic molecules. Finally, the observation that empirical rules for the 
variation in resonance energy versus geometry are obeyed for molecules with constant (Z1 + Z2) is also rationalized. © 1997 Elsevier 
Science B.V. All rights reserved. 

Keywords: Computer simulations; Electron emission; Extended X-ray absorption fine structure (EXAFS); Near edge extended X-ray 
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1. Introduction 

X-ray absorption techniques, in which electron 
transitions from core levels into states above the 
vacuum or Fermi level are excited, have proven 
extremely useful in determining the short-range 
order of both the bulk phase as well as surface 
species. The oscillation of the X-ray absorption 
coefficient above the energy thresholds for the 
excitation of core electrons are formally divided 
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into the so-called NEXAFS (near-edge X-ray 
absorption fine structure) region, which refers to 
the parts of the absorption spectra up to about 
50eV from an absorption edge, and EXAFS 
(extended X-ray absorption fine structure) for the 
parts of the spectra more distant from the edge. In 
both regimes, oscillations are found in the absorp- 
tion cross section which originate from a modi- 
fication of the photoelectron final state by the back 
scattering of the ejected photoelectron. The formal 
division between the two regimes arises since, 
for electrons ejected from the atomic cores with 
relatively high energies, the atomic scattering factor 

0039-6028/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved 
PI1 S0039-6028 (96)  01271-X 



v.L. Shneerson et al./ Surface Science 375 (1997) 340 352 341 

exhibits a strong maximum in the forward direction 
so that the X-ray absorption coefficient as a func- 
tion of energy is dominated by single-scattering 
processes. This significantly simplifies the analysis 
of the spectra. However, the structural information 
that can be extracted from this experiment is 
limited to atomic radial distribution functions. In 
contrast, in the NEXAFS regime (EK<50eV),  
multiple scattering predominates, so that analysis 
of these spectra can yield much more structural 
information, for example, the coordination geo- 
metry, molecular orientations, and the density and 
symmetry of unoccupied valence electron states. 
This also means, however, that all scattering pro- 
cesses must be taken into account to accurately 
describe the positions of the resonances in 
NEXAFS. 

it has also been recently demonstrated [ I ]  that 
it is possible to accurately compute the positions 
of the resonances for small, primarily diatomic, 
molecules using a prescription in which the 
chemical potential is kept constant throughout the 
molecule and where the calculation is performed 
within the local density approximation. This 
strategy allows the positions of the resonances to 
be calculated which are within ~ 1 eV of those 
found experimentally. This method, while allowing 
accurate computation of the experimental data, 
does not allow any direct insights into the way in 
which resonance positions vary with, for example, 
parameters such as bond length or the nature of 
the molecule. Several empirical formulae have been 
proposed for the variation in the positions of 
resonances in NEXAFS data with bond length (see 
for example Ref. [2]). It has been suggested, for 
example, that the energy of the cy resonance with 
respect to the vacuum level varies linearly with p 
where p is the bond length. This "bond length with 
a ruler" approach potentially provides an extremely 
powerful method for establishing adsorbate geo- 
metries without resorting to complex computer 
calculations. It has also been suggested [3] that a 
more theoretically realistic formulation of this 
empirical rule should be that kp  = constant, where 
k is the wavevector of the outgoing wave. This 
latter empirical rule becomes equivalent to the 
former for small changes in bond length ~p << p. 
However, it is important that there be a firm 

theoretical basis for any empirical rule in order 
that the regimes over which such a rule can be 
applied is properly understood. In order to do this, 
an analytical theory for the positions of the 
resonances of NEXAFS spectra has been developed 
based on our previous strategy [ 1 ] that has proven 
successful in accurately predicting resonance 
positions. 

2. General theory of X-ray absorption 

The transition rate for X-ray absorption from 
an initial core state of energy E¢ to a final energy 
E~ + o3 under the influence of a perturbation A(r) 
can be calculated using the Fermi golden rule as: 

W~(E) = 2nlM(E)lZ pr(E), (1) 

where pf(E) is the density of final states and M(E)  
is the excitation matrix element. Using the dipole 
approximation, it can be shown [4] that, in the 
case of K-edge excitation, this is given by: 

W(E)  = - 2 k l M ~ ( E )  I 2 

x Im "Clm'lm' 
m,m -1 sin2 ~il Ylm(g)Y~m'(i) , (2) 

M~d(E) is the radial part of the transition matrix. 
Scattering events contribute through the phase 
shifts ~1 of the final p-wave-like state of the 
adsorbing (central) atom and through the scatter- 
ing path operator z which accounts for multiple 
back-scattering from neighboring atoms. The 
spherical harmonics Y~m(f) depend on the X-ray 
polarization g. 

3. Analytical theory for linear molecules 

It is possible to find analytical solutions for this 
equation, at least in the case of linear molecules 
with C~v or D~h symmetry. It should be noted 
that this still includes a wide range of molecules 
of interest to surface science and catalysis, for 
example, CO, N 2 and H2, as well as a large number 
of "pseudo" linear molecules, for example ethylene 
or acetylene, where the hydrogen atoms scatter 
only weakly. In these cases, because of the presence 
of the C~ rotation axis, there is no azimuthal 
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dependence in the absorbance so that only the 
spherical harmonics in which m = m' contribute to 
the right hand side of Eq. (2). It thus simplifies to 
yield: 

3k 
W(E) - - 2re sin 2 31 [M~]d(E)[2 

x Im {z,1,11 sin e 0 + Z,O, lO cos 2 0}, (3) 

where 0 is the angle between the polarization 
direction g and the z axis which is taken to be 
oriented along the Coo axis. This can be further 
simplified, in the case of gas-phase molecules, since 
the free rotation in this case allows the equation 
to be integrated over all angles to yield: 

k 
W(E) = IM~O(E) I 2 

27c sin 2 31 

x Im {2Zlla1 + z10,1o}, (4) 

where the matrix element rlL n is identified with 
the appearance of a n resonance and the element 
z10,1o with the presence of a ~ peak. This scattering 
path operator can be written in terms of the atomic 
scattering matrix of the central (i.e., source) atom 
t o and the reflection matrix for scattering from 
neighboring atoms R~,.,,,,.,(E) I-4,5] as: 

z = it°( 1 -- Rt°) - ' ,  (5) 

where t°(E) is given by: 

t°(E) = i sin ill(E) exp(i3,(E)). (6) 

There are two complications which arise in 
deriving an analytical scattering theory. The first 
appears in the calculation of the z operator since 
that involves the inversion of a multidimensional 
matrix. The second complication comes from the 
form of the reflection matrix R,m,l'm' which is given 
by: 

R,ml 'm '  Z Z Z oi TiJ ,o i  , = g 'm, ' lml  l lml , '2m2~'2m2,1  'm'~ 
i.j l l ,m I 12,m 2 

(7) 

where the term g describes the propagation of 
spherical outgoing waves from the central atom 
to a neighboring atom. The T matrix (which 
is the inverse of the real space K K R  matrix 
H ij = (t- ')g~j -- gU) represents the propagation of 

the wave scattered from a neighboring atom back 
to the source atom so that T = ( t - ' - g )  -1. The 
difficulty in inverting these matrices is ameliorated 
in the case of a diatomic molecule, first, since only 
two elements, namely 7711,, 1 a n d  TlO,l O are required 
for the calculation and second, in any diatomic 
molecule the surrounding cluster only consists of 
a single other atom. Thus i = j  = 1 and: 

T]~,x,~, (E) = 6il 3 j, 6mm,~l,, t 1 (E). (8) 

This results in a much simplified form of the matrix 
R as: 

RI,,,,,,,,(E)= ~ oi t ,o glm, , ,ml(E)  ,x(E)gllml,l ,m,.  (9) 
l l m l  

Finally, symmetry restrictions on the form of R 
and g also allow further simplifications to be made 
and these are discussed below. 

4. Symmetry effects 

Application of an n-fold rotation operation 
to the angular momentum wavefunctions is 
represented by: 

C, Ylm = exp( 2~im/n) Yl,,. (10) 

This rotation initiates a transformation of the 
reflection matrix: 

C n R l m , l ' m  ' = exp(2xi(m -- m')/n)Rama'm'. (11) 

This is because, from Eq. (9), the transformation 
properties of the R matrix with respect to the first 
pair of indices (1, m) are identical to those for the 
propagator g, ...... which transforms like the func- 
tion I11.,. For a molecule with an n-fold symmetry 
axis, the reflection matrix should remain 
unchanged under the transformation in Eq. (1 i) so 
that the possible range of m and m' values are 
restricted by the condition: 

m - m ' = O ,  +n, +_2n, +_3n, . . . .  (12) 

In the case of the Coo axis, this yields the condition 
that m = m ' .  The reflection matrix is therefore 
subdiagonal with respect to the magnetic quantum 
numbers m as: 

R - .~ o(,,) (13) ,m,, 'm' -- Vmra' *X l l " 
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A new index N defined as N =  1 (1+  1 ) + m +  1 
is introduced for convenience which gives the 
structure of the reflection matrix as: 

Rl1 0 R13 0 

0 R22 0 0 

R13 0 R33 0 

0 0 0 R4a 

(14) 

In order to finally derive an analytical expression, 
an explicit form of g is required. This is given by 
Ref. [4]:  

gilJ,l,m,(krij ) = 4n ~ i 1 - 1 ' - I " ( _  1)m'+m"h(ll,) 
l"m" 

x Yl",-m"(~)n(lm, l'm', l"m"), (15) 

where hi 1) is the Hankel function, k (= ~ )  is the 
wavenumber of the propagating electron, ri~ is the 
position vector connecting atoms i and j, and: 

B(lm, l'm',l"m")= f YlmYcm'Yy,-m'df2. (16) 

Taking the unit vector f to be oriented along the 
internuclear axis (taken to be the z axis), this 
allows g to be simplified as: 

ij glm,l,m,:(~mm, k f ~ Z  N / ~  + l(--1) rail-l"-1" 
1" 

× @)(krij)B(lm, i'm', 1"0). (17) 

5. Analytical solution for resonances of  diatomic 
molecules 

NEXAFS probes relatively small energies above 
the absorption edge resulting in rather low 
(< 50 eV) values of the kinetic energy of the out- 
going photoelectron. This suggests that the angular 
momentum contributions to the scattering ampli- 
tude t o are likely to be restricted to only s and p 
waves. This is shown below to be true and is in 
accord with chemical experience which suggest 
that the anti-bonding levels into which the electron 
is scattered can be effectively described using s and 

p orbitals. A matrix X is introduced where: 

X = ( 1  --Rt°)  -1, (18 )  

which allow the 17 matrix to be represented as: 

17 = it°X. (19) 

In order to evaluate the transition rate, W(E), only 
two elements of this matrix, namely X33 and X44 
are required. The first term describes excitation 
into a a state and the second term a transition 
into a n state. The element X44 can be found from 
a 1 x 1 matrix as: 

( 1 -- R44t°)X,a = 1, (20) 

and to find X33, a 2 x 2 matrix must be solved: 

( 1 - - R l l  t° --R13t° ~ ( X 1 3 )  (01) 
--n,3 t° 1 - R 3 3 t ° / \  X33 = , (21) 

which finally yields the following expressions for 
the elements of 17: 

it ° 
= (22) T l l , l l  = 1744 = 1722 1 -- R44t 6' 

and 

i t  o 
T10,10 -~ 1733 - -  2 0 0" (23) 

1 - R3a  o ( R t 3 )  t s tp 
t p - I  S R,,t~ 

More general forms of these matrix elements up 
to rz2 have been described elsewhere [6] .  

It is interesting to note that the element 1711,11 
does not depend on the s-wave phase shifts. This 
is because of the symmetry restrictions (Eq. (13)) 
imposed by the reflection matrix R. This ensures 
that the off-diagonal matrix elements R1_+1,oo are 
zero which prevents mixing of s- and p-like waves 
in the final molecular n state. 

6. Analytical solution of the equation for the 
N E X A F S  spectrum 

The forms of the reflection matrix are derived 
elsewhere [6]  and are displayed below for just s 
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and p scattering in terms of x(=kp) where p is the 
internuclear separation as: 

R 
44 P’ 

R33 = (&W’(X))2~, + 

2 t 
p, 

RI3 = &@(~)h~~‘(x)t, - 3&\‘)(x)Ttp, 

RI1 = (h&“(~))~t, + 3(h\“(~))~t,. (24) 

The expression for the z matrix may be written as: 

iti 

211J1 - 1 - 4t’ 
it: 

~10.10 - 1 _ &’ 

where the Z functions are given by: 

(25) 

(26) 

These together with Eq. (4) constitute the analytic 
expressions for the NEXAFS spectra. The analytical 
results (----) are shown compared with the exact 
computer calculation (- ) in Fig. 1. Clearly the 
agreement between the two sets of data is good 
indicating that the accurate calculation corres- 
ponds well with the full computer calculation. Note 
that the analytical solution was derived using only 
s and p waves and the discrepancy between the 
full calculation and the analytical solution is evi- 
dent from slight differences between the two curves 
between 25 and 35 eV kinetic energy. This dis- 
crepancy disappears if d functions are included in 
the analytical expression. 

7. Calculation of resonance position 

In most cases, the whole form of the spectrum 
is not required, merely the values of the energy at 
the peak of the resonances. One can expect that in 
the vicinity of the maximum of a resonance, the 

5 10 15 20 25 30 35 40 45 

Kinetic Energy (eV) 

Fig. 1. Calculated NEXAFS spectrum of gas-phase nitrogen 

NI: solid line is the exact computer calculation and the dashed 

line is that from the analytical solution with only two (s and p) 

spherical harmonics. When d spherical harmonics are added, 

the analytical spectrum is indistinguishable from the exact 

computer simulation. 

corresponding matrix element (either rll,ll for the 
r-t resonance or rlo,lo for the cr resonance) should 
be large and lead to a peak in the absorption 
coefficient. According to Eq. (25) this condition 
should be fulfilled if the real and imaginary parts 
of 1 - .Zz or 1 - C, become small. It can be shown 
that this condition is fulfilled if -Im(Z) becomes 
equal to 1 - Re(C) with the stipulation that both 
of these values are simultaneously small. The 
behavior of the real and imaginary parts of C, are 
displayed in Fig. 2 between 5 and 40 eV kinetic 
energy for nitrogen gas. These are equal for 
energies of - 14 and 29 eV. However, the real and 
imaginary parts of Z, are simultaneously small 
only for the higher kinetic energy. Marked as an 
asterisk is the position of the cr resonance for 
nitrogen and this agrees well with the prediction. 
This is further illustrated in Fig. 3 which displays 
the calculated NEXAFS spectra for both oxygen 
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Fig. 2. Real and imaginary parts of the function 1 -  X,, for 
gas-phase N2 versus kinetics energy. Note the coincidence 
between the intersection point and the position of the cy 
resonance indicated by an asterisk. 
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Fig. 3. Correspondence between the NEXAFS peak positions 
and the intersection of the points of the real and imaginary 
parts of the 1 - £  function for (a) oxygen and (b) nitrogen 
molecules. 

and nitrogen (both of which correctly reproduce 
the experimental data) and also display the values 
of 1 -  Re(X~) and - Im(X~)  for the cr resonance 
and corresponding values for the n resonance. 
Clearly the crossover in all cases coincides well 
with the resonance position. 

8. Empirical  curves for resonance positions in 
NEXAFS 

Such a method for deriving the position of a 
resonance, along with the ability to be able to 
analytically calculate the forms of the matrix, 
allows the possibility of formulating empirical 
relationships between molecular geometry and the 
positions of the resonances and for these relation- 
ships to be based on a firm theoretical footing. 
The criterion for the appearance of the resonances 

from the variation in Z as a function of energy 
suggests that, from Eq. (26), the resonance position 
depends on the scattering amplitude t as well as 
internuclear distance. This will be illustrated for 
the position of the rc resonance. The Z-functions 
for diatomic molecules are given by Eq. (26) with 
t(10)= tx, and where: 

Re(t1) -= fl = -s in2 61, Im(tl)  - t; = ½ sin 231. 

(27) 

It follows that t~' can be expressed through the 
value of fl as: 

t~' = ( -  1 ) "x / -  t't(1 + t'l), (28) 

where n is equal to the integer part of the ratio 
261/m The method is illustrated for 7t-resonances 
since this is simpler to address analytically since 
only tp and the h(~l)(x) functions are involved in the 
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calculation of Z~: 

9 2 (1) 2 Z'~ = ~ tp ( h l  (x)) .  (29) 
X- 

As explained above, the resonance positions are 
given in terms of the product x = kp and the real 
parts of tp by the roots of Re(Z~) - Im(Z~) = 1. It 
is merely necessary to manipulate the Hankel 
function h~l)(x) = - ( 1  + i/x) exp(ix)/x to separate 
the real and imaginary parts of the Z~-function. 
This results in an explicit form of the condition of 
the appearance of a resonance as: 

[1 + 2tp - 2 ( - 1 ) " x / -  tp(1 + t~)] 

x [(x 2 - 1) cos 2x - 2x sin 2x] 

+ [1 + 2t~ + 2 ( -  1 ) "x / -  t'p(1 + t~)] 

X 6 
x [(x 2 - 1) sin 2x + 2x cos 2x] - 9tp" (30) 

The roots of this equation that relate Re(tp) and 
x (=kp)  are displayed in Fig. 4. Note that this 
curve covers all possible values of Re(tp): 
- 1 _< Re(tp) _< 0. The product of the wavevector 
of the electron at resonance and the bond length 
of the molecule is uniquely related to the real 
part of the atomic scattering matrix. Note that this 
curve is exact within the limitation of the angular 
momenta that are included in the calculation 
(only s and p waves) and applies equally well to 
all homonuclear molecules. Different molecular 
species are included only through the value of tp. 
The points on this curve for nitrogen and oxygen 
are illustrated by asterisks. A similar type of curve 
can also be envisaged for sigma resonances except 
that, in this case, x is a function of the real part of 
both ts and tp SO that this, in fact, consists of a 
universal surface. Note again, that this empirical 
formulation is exact within the constraints outlined 
above (only s and p waves included). This 
approach, therefore, allows the wavevector of 
the n and cr resonances to be calculated only by 
calculating tp and ts and using the universal 
curve and calculating the corresponding kinetic 
energies (k2/2) and computing the corresponding 
resonance spacing. 

It is important to note, however, that the t 
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Fig. 4. Universal curve for the location of the n resonances. 
The dimensionless parameter kp is equal to the product of the 
electron wavenumber k and the bond length p. The abscissa 
plots the values of the real part of the p-wave element of the 
atomic scattering amplitude t. The asterisks indicate the 
locations of the • resonances for nitrogen and oxygen. 

matrix is often suggested to be an atomic property 
[3]  and therefore, in principle, should not depend 
on the internuclear distance p. In fact, the t matrix 
is calculated within the muffin-tin approximation 
where the muffin-tin radius is taken to be p/2 
so that small variations in the value of the inter- 
nuclear distance will affect the value of t. However, 
in the limit of small variations in p, it is assumed 
[3]  that this should lead to rather small changes 
in the value of t. This therefore implies that 
kp = constant for both the ~ and n resonances. 
This rule has been proposed previously by Natoli 
[-3]. Since the electron kinetic energy is given by 
EK = k2/2, this rule implies that a plot of E K versus 
1/p 2 should yield a straight line. This is illustrated 
in Fig. 5 for a series of heteronuclear molecules 
with constant values of (ZI + Z2) where Z1 and Z2 
are the atomic numbers of each of the pair of 
atoms in the molecule from which the resonances 
arise. This yields a reasonably straight line 
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Fig. 5. Plot of the a resonance energy A relative to the 
ionization potential I.P. versus the inverse square of the bond 
length p between the pair of a toms from which the resonance 
arises. Each atomic pair is characterized by a particular value 
of Z. the sum of the atomic numbers  of the absorber and 
scatterer. The data are taken from Ref. [2] .  

implying the Natoli's rule is correct and that the 
empirical relationship between the sigma resonance 
energy and the bond length is given by: 

A 
3 = ~ + E0, (31) 

F)" 

where A =_ h v r e s  - I.P. is the difference between the 
photon energy hvro  s at resonance and the ionization 
potential I.P. of the molecule. The value of E o 
arises since experimental energies are referenced 
to the vacuum level whereas, in the calculation, 
energies are referenced to the muffin-tin zero of 
energy. A is a constant that depends on the scatter- 
ing phase shifts and, according to Fig. 4, the value 
of tl, for atoms 1 and 2. This linear relationship 
implies that the phase shifts (and corresponding 
values of tl) and the muffin-tin zero energy are not 
sensitive functions of internuclear distance. This is 

definitely true in the extended X-ray absorption 
region where the high-energy electron is scattered 
primarily by the atomic core of the scatterer and 
which is therefore insensitive to the details of the 
chemical bonding. In addition, at high kinetic 
energies (for example, larger than ~ 100 eV), the 
phase shifts are very slowly varying functions of 
energy which renders them rather insensitive to 
the choice of muffin-tin zero. It has however been 
suggested [-7] that the value of Eo does vary with 
bond length, and a form of this variation was 
proposed to rationalize the experimentally found 
linear variation ( 3  = a - b p )  of the position of the 
sigma resonance with bond length. In order to test 
this notion in the range of NEXAFS energies, 
values of tt and the muffin tin-zero energy were 
calculated for N2 as a function of internuclear 
separation. The results of these calculations are 
shown in Fig. 6 as a function of the electron kinetic 

-0.2 

- 0 . 4  

- 0 . 6  ¸ 

-0.8 

~ -1.0 

o 

-0.2 

- 0 . 4  

- 0 . 6  

-0.8 

-1.0 

I I I I I I I 

0 

- - - < a  

10 2'0 310 ;0 5'0 60 ;0 
I I I I I I I 

0 

Bond length p=1.095 

I i I I I I I I 

10 20 30 40 50 60 70 
E k (eV) 

80 

80 

Fig. 6. Real parts of the atomic matrices t~ and tp for nitrogen 
versus kinetic energy EK at two different values of internuclear 
separation p. Note that the t-matrices are very different for 
different values of p at low values of kinetic energy, EK, but 
are almost identical at higher kinetic energies. 
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energy and in Fig. 7 as a function of internuclear 
distance for the variation in Re(h) and in Fig. 8 
for the muffin-tin zero energy E0 as a function of 
bond length. Clearly, both of these values vary 
substantially with internuclear distance belying the 
conclusions suggested above from the data in 
Fig. 5. Such a trend, in which the t-matrices become 
independent of the bond length (or muffin-tin 
radius) as the kinetic energy EI~ approaches large 
values, is emphasized in Fig. 6. In addition, the 
l i p  2 dependence for Eo found here (Fig. 8) is 
completely different to that proposed by Sette et al. 
[7] (where they suggested Eo(p) = a + b/p 2 + cp) 
and the variation in muffin-tin zero with bond 
length is displayed in Fig. 8 and empirically varies 
with p as: 

b 
Eo(p) = a + ~ .  (32) 

This curve is substantially different to those 
proposed by other workers. This is illustrated by 
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Fig. 8. A linear fit to the calculated value of muffin-tin zero, 
Eo, versus the inverse square of the bond length p for a class 
of molecules characterized by Z = 14. 

Fig. 9 which compares our result (curve 3) with 
results from a linear regression fit assuming that 
A varies strictly linearly with p [7] (curve 1). The 
horizontal line (curve 2) is a graphical illustration 
of Natoli's rule (Eq. (31)). 

It is difficult to obtain a simple analytical 
relationship between A(p) and q(p) .  A(p) can 
however be calculated directly using the protocol 
described above and the results are displayed as a 
plot of A(p) vs p (Fig. 10). This clearly reveals 
linear dependence so that Natoli's rule should be 
modified to read: 

EK(p)p 2 = A(p)  = ot + tip, (33) 

where ~ and/3 are constants and EK is referenced 
to the muffin-tin zero. The bond-length-dependent 
muffin-tin reference level Eo(p) and resonance 
kinetic energy EI((p) of the emitted photoelectron 
suggest that the theoretical value of A (A th) should 
be written as: 

Ath(p) = EK(p) -b Eo(p). (34) 
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Fig. 9. A comparison of the variation of muffin-tin zero 
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in the text. 

Substituting Eqs. (32) and (33) into Eq. (34) results 
in: 

7 + b  
zl th = a + -fl + - -  ( 3 5 )  p p2 • 

The polynomial fit to Eq. (35) is shown in Fig. 11 
and yields slightly better agreement to the experi- 
mental data than a simple plot versus 1/p 2 (Fig. 5). 
This equation, however, now takes into account 
the variations in reference energy, as suggested by 
Sette et al. 1-73, as well as the variation in the 
scattering phase shifts as a function of internuclear 
distance. 

An interesting observation is that, over a narrow 
range of bond lengths, the ~ resonance energy 
varies linearly with bond length. This is illustrated 
in Fig. 12 where the resonance energy is plotted 
versus p. A linear fit is shown to this curve (solid 
line) and reveals very good agreement. Eq. (35) is 
also plotted onto this curve (dashed line) and, over 
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Fig. 12. Linear dependence of cr resonance energy versus bond 
length (solid line). Plotted also on this figure as a dashed line 
(----) is the functional form taken from the data of Fig. 10 and 
a dotted line (...') is the Natoli tule representation taken 
from Fig. 5. 

the narrow range for which measurements are 
made, reveals very good agreement with experi- 
ment. The dotted line represents a direct appli- 
cation of Natoli's rule (see Fig. 5) where the 
agreement with the experimental data is less good 
than for a linear function and the function pro- 
posed here (Eq. (35)). It is important to emphasize 
that Eq. (35) is consistent with muffin-tin model 
calculations and is therefore placed on a firm 
theoretical basis rather than being a best-fit 
function. 

The results of Fig. 13 emphasize that, in spite 
of the strong correlation between bond length p 
and the phase shifts on one hand and the product 
EKp 2 on the other, the resulting calculated value 
(zt th + constant) x p2 remains independent of bond 
length. Again, such a constancy does not imply 
that EKp 2 = constant. 

The analytical expressions for the positions of 
resonances elucidate the phase conditions leading 
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Fig. 13. Illustration of the "bond length with a ruler" rule for 
the calculated positions of the (r resonances. 

to the appearance of resonances. A similar descrip- 
tion has been proposed by others [8] but without 
recourse to strict analytical expressions. From 
above, resonances appear in the vicinity of the 
singularity defined by 1 -  27= 0. This indicates 
that, at resonance, the argument • of the complex 
Z matrix satisfies the equation: 

= 2rm, (36) 

where n is an integer. It is possible to analyze the 
contributions to the phase factor ~. 

Let us take for example the case of rt resonances. 
The corresponding phase factor • is given by the 
sum (see Eq. (26) for Z~), 

~ = 2~b x + ~bp + ~b °, (37) 

where (~x=arg(h]l)(x)), ~p=arg(tp) and ~b°= 
arg(tv°). From Eq. (27) it follows that: 

arg(tp) = a tan(-cot  6p) = 6pmodulo(n) 

7E 
- ~(2 -sgn(sin 6v)), (38) 
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with a similar expression for arg(t°). Note, that: 

( x s i n  x + cos x )  
Cx=a tan  - - , (39) 

COS X - -  s i n  X 

at x >> 1 (so, in the case of a plane wave or 
within the small-atom approximation) reduces to 
dpx ~ x = kp. Substitution of these equations into 
Eq. (36) gives the stationary phase condition of the 
n resonance: 

2 × atan - + ~pmodulo(n) 
cos x - -  sin 

7~ 
+ ~ sgn(sin ~p)- ' [-  3°modulo(n) 

7~ 
+ ~ sgn(sin 6 °) = 2gn. (40) 

As noted above, a good correlation is found [2,7] 
between shape (~) resonance position and bond 
length for series of molecules with (Z + Z °) con- 
stant. This correlation may be obtained by using 
the analytical expression in Eq. (26) for X~,. It is 
obvious that each term in 22~, includes the products 
t x t o of atomic scattering matrices of both atoms. 
Contribution to the total phase ~ ,  from each of 
the atoms is shown in Fig, 14 for s- and p-spherical 
harmonics. The triangles correspond to the calcu- 
lated values of phases ~b of the atomic t-matrices 
for molecules where Z + Z ° =  14 plotted versus 
atomic phase shifts 6. It has been demonstrated 
[9]  that the scattering phase shifts ~ are pro- 
portional to Z, the atomic number of the scattering 
center so that ¢ = C(E)Z where C is an energy- 
dependent constant. Phases arising from the pairs 
t x t  o are given by C ( E ) ( Z + Z  °) and result in 
relation between the sum of the atomic numbers 
Z of the two atoms and position of resonance. 
This criterion for the appearance of a resonance 
indicates that their positions depend only on 
Z + Z ° as found experimentally (Fig. 5). 

9. Conclusions 

An analytical theory for the positions of the 
resonances in NEXAFS is developed which success- 
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fully reproduces both the shape of the spectrum 
by computer simulations and also correctly pre- 
dicts the positions of the resonances for diatomic 
molecules. This analytical strategy also allows the 
resonance positions to be calculated and a uni- 
versal curve to be generated for the positions of 
the resonances. This reveals that the product kp, 
where k is the wavevector of the outgoing electron 
and p the molecular bond length, depends only on 
the atomic scattering matrices t and appears to 
confirm Natoli's rule if the matrices t do not 
depend on chemical bonding. Experimentally a 
plot of the position of the sigma resonance versus 
1/p 2 yields a reasonable straight line. It is however 
also found that both the muffin-tin zero and phase 
shifts depend on the internuclear distance so 
that such a direct interpretation of Natoli's rule as 
A = Const /p  2 + Eo is not valid. Taking into account 
the way in which these values vary with inter- 
nuclear distance suggests a more appropriate form 
of an empirical relation between sigma resonance 
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energy and bond length is an equation of the form: 
A = a + B / p  + C / p  2. This equation gives a some- 
what better prediction of the variation in position 
of the sigma resonance with bond length than 
a simple Natoli 's  rule plot and is on a firmer 
theoretical footing. It is also found that, over 
the range in which experimental measurements 
are made, this function is rather linear also 
rationalizing the experimentally found linear 
correlation. 

This analytical calculation of the position of the 
sigma resonance in NEXAFS also allows the obser- 
vation that Natoli 's  rule and the new rule above 
are obeyed for groups of molecules in which 
Z1 + Z2 are constant to be rationalized. 
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